E\(cecv't Lecon Tha Stevckre o8 Nopel's Type T‘“‘?/J Constable

(s2e W, twpel.ocg Lndec Publications)

2.6 Inductive Types

Defining types in terms of themselves is quite common in programming, often pointers
are used in the definition (in Pascal and C for example), but in languages like M L,
direct recursive definitions are possible. For example, a list of numbers, L can be
introduced by a definition like

define type L = N+(NxL).

In due course, we will give conditions telling when such definitions are sensible, but
for now let us understand how elements of such a type are created. Basically a type
of this kind will be sensible just when we understand exactly what elements belong to
the type. Clearly elements like inl(0),2nl(1), ..., are clements. Given them it is clear
that inr({0,nl(0))), inr({(1,inl(0))) and generally inr({n,inl(m)})) are elements, and
given these, we can also build

inr((k,inr({n,inl(m)))}) and so forth.

In general, we can build elements in any of the types

N+NxV
N+Nx (N+NxY)
N+Nx (N+Nx(N+N xY))

The key question about this process is whether we want to allow anything else in the
type L. Our decision is no, we want only clements obtained by this finite process.

In set theory, we can understand similar inductive definitions, say a set L such that
L = NU(N x L), as least fixed points of monotonic operators I’ : Set — Set. In
general, given such an operator I, we say that the set inductively defined by F is the
least F'—closed set, call it I(F'). We define it as

I(F) = N{Y|F(Y) C V}.

We use set theory as a guide to justify recursive type definitions.

For the sake of defining monotonicity, we use the subtyping relation, S C T. This
holds just when the elements of S are also elements of T, and the cquality on S and
T is the same. For example,

if SCT then N+NxS € N4+NxT.

5

Def. Civen a type expression I : Type — Type such that if Ty € T2 then F(T)) €
F(T3), then write p X.F(X) as the lype induclively defined by F.

To construct elements ol xX.F'(X), we basically just unwind the definition. That is,

il e F(pX.F(X)) then ¢ e pX. F(X).

We say that &y = &2 in pX. (X)) il =t in F(pX.F(X)).

The power of recursive types comes from the fact that we can define total computable
functions over them very elegantly, and we can prove properties of elements recursively.
Recursive definitions are given by this term,

p—ind(a; f, z.b)

called a recursor or recursive-form. It obeys the computation rule

p—ind(a; f,z.b) evaluates in one step lo

bla/z, (y — p—ind(y; f,z.0))/ f].

(Note in this rule we use the notation b{s/z,¢/y] to mean that we substitute s for x
and ¢ lor y in b.)

typing
The way we figure out a type for this form is given by a simple rule. We say that

p—ind(e; f, z.0) is in type B

provided that ¢ ¢ uX.F(X), and if when Y is a Type, and Y C pX.I'(X), and =
belongs to F(Y), and f maps Y to B, then b is of type B.

induction
The principle of inductive reasoning over pX.F(X) is just this.

pi—induction

Let R = puX.F(X) and assume that Y is a subtype of R and that for all # in Y, P(z)
is true. (This is the induction hypothesis.) Then if we can show Vz: F'(Y).P(z), we
can conclude

Vr: R.P(x).

With this principle and the form pg—ind, we can write programs over recursive types
and prove properties of them. The approach presented here is quite abstract, so it
applics to a large variety of specific programming languages. It also stands on its own
as a mathematical theory of types.

typing rules

We will write these informal rules as inference rules. To connect to the Nuprl ac-
count | will use its notation which is rec(X.T') for pX.T and recc.ind(a; f,z.b) for
peind(a; f,2.0). In our Core Type Theory, recursive types are written as pX.T" where
j¢ stands for the least fixed point operator. 'This is perhaps more standard notation;
however, rec(X.T) is the Nuprl syntax and is mnemonic.

s P

Here is the rule which says rec(X.T") is a type using a sequent style presentation of

rules:

E, X :Typet T € Typc Qote T ecotone
EFrec(X.T) € Type

For example, we can derive rec(N.1 + 1 x N) is a type as follows:

F1eType E,N:Typek N € Type
EF1xNeType

E,N :TypekF (14+1x N) € Type

EFrec(N1+1x N) € Type

F 1€ Type

Remember that 1 is a primitive type. This type is essentially “1 list.”

To introduce elements we use the following rule of unrolling:

EFte Tlre(X.T)/X]
EF i€ rec(X.T)

T

Here are some examples on in rec(N.1 + 1 x N). Recall that type 1 = {e}.
The nil list is derived as:

Fecl
N :Typet inl(e) € 1 + ree(N.1 +1 x N)
Finl(e) € rec(N.1 +1 x N)

Lists are derived as:

Feecl Finl(e)€rec(N.1+1x N)
F pair(e;inl(e)) € 1 x rec(N.1 41 x N)
b inr(pair(e;inl(e))) € 1+ 1 x ree(N.14+1 x N)
F inr(pair(e;ini(e))) € ree(N.1+1 x N)

To make a decision about, for example, whether { is nil or not, unroll on the left:

EJd:14+1xrec(N1+1xN)FgeG
Ed:rec(N1+1xN)FgeG

recursion combinator typing

This version of recursive types allows “primitive recursion” over recursive types also
called the natural recursion. The Nuprl syntax is

recand(l; [, z.9)

The usual convention for the syntax also applies here: ¢ and ¢ are two sub-terms and ¢
is in the scope of two binding variables f and z. (We define the recursion combinator

to be A(w.recind(w; [, 2.9)).)
For evaluation, we recall the computation rule:

recand(t; fyz.9) =, glt)z. Mw.reciind(w; f, 2.9/)]
called p reduction. We don’t evaluate {, but simply substitute it into g.

Typing of the recursion combinator is the key part:

X - GFged

Erterec(X.T) EX :Type,z:1T,f:.

EVF recand(l; f,z.9) € G
Where is the induction? It’s in the top right-hand side. For sanity check, unwind:
recind(t; f,z.9) € G reduces to g[t/z, Mw.reciind(w; f,z.9/f))] € G. As we expect,
g € G, z and y have the same type, f is a function from clements of recursive type to
G. Then we bottom out on X. Thus X in f: X — G is the key part.

The longer you know this rule, the clearer it gets. It summarizes recursion in one rule.

8

definition of ind using rcc_ind

lere is how to define a natural recursion combinator on N, call it ind(n; b; u, i.g), using
recand(). Let’s say how this behaves. The base case is:

ind(0; b;u,i.g) — b
The inductive case is:
ind(succ(n); byu,i.q) — g[n/u,ind(n; b;u,i.9)/7)

We combine the base and the inductive cases into one rule as follows:

EFneN w:Ni:Glu/z|F g € Glsucc(u)/a]
E 't ind(n;bu,ig) € Gn/z)

To derive this rule for ind we can encode N into 1 list:
I. 1 ={e}
2. 0 =ini(e)
3. We can define the successor of m as swee(m) = inr{e, m)

4. N is isomorphic to rec(N.1 + 1 x N)

This presentation of N doesn’t have any intrinsic value; it’s just a way to look at N
(for an alternative presentation try deriving ind from rec(N. 1 + N)). It gives us an
existence proof for the class of natural numbers.

Given the above setup, we want to derive the rule for ind:

EtrneN ErbeG0/x] FE,u:N,i:Gu/z]tF g € Glsucc(u)/x]
Et ind(n;byju,i.9) € Gn/z)

using the rule of rec_ind:

Ettere(XT) E, X:Type,a:T, [:(y: X - Gly/z))Fge &
EF recand(l; f,2.9) € Gt]2]

Notice the following facts in the above two rules:

o In the rule for induction the first hypothesis denotes that we are doing induction
over the natural nymbers, the second one is the base case of this induction (notice
that we substitute & by zero) and the third is the induction hypothesis, by which
we prove the fact for the successor of u assuming it for u.

¢ In the rule for recursive-induction & should be of type T (which is the body of the
recursive type). This is because we want to be able to compute the predecessors
of z.

9

If we want to indicate the new variables we use in the recursive induction rule we write
the rule adding this information:

ErtereX.T) E, X :Type,a:T, [:(y: X o CGly/a])Fgel
E b recand(t; f,x.g) € G[t]x]

This is an elegant induction form describing any possible recursive definition.

Lets see how this works in the case of building the ind rule. We constuct a ¢ from
g, so that if we use § in rec_ind we will derive ind(n; b;u,i.g). Belore we present g,
lets try to get a bit of the intuition. The most important part of the ind rule is its
induction hypothesis. We want to specialise the rec.ind rule so that we can pull out
and isolate this induction hypothesis.

The idea is the following:
Let ¢ be the function f applied to u, i = f(u), where u is the predecessor

of & we are looking at. We can get this predecessor u (as we have already
noticed before) by using the hypothesis x : 7" and by decomposing .

For example, il T is the type of 1 list, then 7' =1 +1 x N. We do a case split and we
get two cases; in the first case we get 1 which represents zero, and in the second case
we get 1 x N which is the successor. We can construct g, given g of the ind form, by
taking a close look at the structure of a:

e T is a disjunct (and, hence, ¢ is a decide),
e T’sinl side has the zero, so we need it as the base case (which is &) and

e T’s inr side is a pair which we want to spread and use. In the spread, u will
denote the predecessor of z.

It seems that the following form for § can give us all we need:

§ = decide(x; z.b; p.spread(p; o, u.g([(w)/7]))

As an exercise you can prove that § € G (hinf: use the fact that b € G[0/x]).

We know that
be Glinl(e)/x]

Also
y:Xand f: X — Gly/x]

SO
x = mr(pair(e,u))

which means
x = suce(u).

So in fact we are doing the substitution G[succ(u)/x] and, thus g € Glsuce(u)/x).

10

We leave to the reader to carry out the simple type-checking (applying the rules for
decide and spread to this definition). The interesting point is that in ¢ € G, we are
building up « cither as inl(e) or as inr(pair(e,u)); in one case this is G[0/zx] and in
the other G[succ(z)/z].

We have now shown that we have built the natural induction form for integers from
the recursion combinator.

2.7 Co-inductive Types

The presentation of inductive types is from Nax Mendler’s 1988 thesis (/nductive
Definitions in Type Theory) and writings. Nax discovered a beautiful symmetry in
the type definition process and used it to define a class of types that are sometimes
called “lazy types’ (see Thompson book, Typc Theory and Functional Programming
[43]). Essentially co-inductive types arise by taking maximal fixed points of monotone
operators. The standard example is a siream, say of numbers

define type S=NxS&.

The clements of this type are objects that generale unbounded lists of numbers ac-
cording to a certain generation law. The generators are recursively defined and have
the form

v—ind(a; f,z.9)

much like the recursors.

Here is how the types are defined.

Definition Given a monotone operator F on types, v X.F'(X) is a type, called the
co-inductive type generated by F'.

An element of v X.F(X) is defined from the generalor v—ind(a; f,:.b). This is well
defined under these conditions:

Given a type D, the seed type, if del) and Y is a type such that v X. FF(X) C Y with
f:D — Y and zeD then bcF(Y),

then v —ind(d; f,z.b) e vX.F(X).

For example, if we call vY.Nx Y a Stream, then sind(k; [, z.(z, f(z+1))) will generate
an unbounded sequence of numbers starting at k.

1

In order to use the elements of a co-inductive type, we need some way to force the
generator to produce an element. This is done with a form called ouf. It has this
property:

If tcvX.F(X)
then out(t)ek (v X.F(X)).

This form obeys the following computation rule.

out(v—ind(d; f, z.b))
evaluates to b[d/z,(y — v—ind(y; [,2.b)/ f].

2.8 Subset Types and Logic

One of the most basic and characteristic types of Nuprl is the so called sel type or
subset type, written {x: A| P(a)} and denoting the subtype of A consisting of exactly
those elements satisfying condition P. This concept is closely related to the set theory
notion written the same way and denoting the “subset” of A satisfying the predicate
P. In axiomatic set theory the existence of this set is guaranteed by the separation
aziom. The idea is that the predicate P separates a subset of A as in the example of
say the prime numbers, {x:N|prime(x)}.

To understand this type, we need to know something about predicates. In axiomatic
set theory the predicates allowed are quite restrictive; they are built from the atomic
membership predicate, x € y using the first order predicate calculus over the universe
of sets. In type theory we allow a different class of predicates — those involving
predicative higher-order logic in a sense. This topic is discussed in many articles and
books on type theory [33, 13, 36, 43, 12, 11] and is beyond the scope of this article, so
here we will just assume that the reader is familiar with one account of propositions-
as-types or representing logic in type theory.

The Nuprl style is to use the type of propositions, denoted Prop. This concept is
stratified into Prop; as in Principia Mathematica, and it is related by the propositions-
as-types principle to the large types such as T'ype. Prop; are indeed considered to be
a “large types.” (See [11] for an extensive discussion of this notion.) For the work we
do here we only need the notions of T'ype and Prop which we take to be T'ype, and
Prop;y in the full Nuprl theory.

